Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 46(7): 1004-1009, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37088555

RESUMO

Human lactoferrin (hLF) is a glycosylated globular iron-binding protein with high functional versatility that elicits anticancer, neuroprotective, and anti-inflammatory effects. Some of the diverse functions of hLF are induced after its internalization into various cells via cell surface endocytosis receptors, such as proteoglycans, which contain glycosaminoglycan (GAG) chains. We have previously demonstrated that an hLF derivative comprising the N-terminal half of hLF (referred to as the N-lobe) is internalized by intestinal enterocyte Caco-2 cells. However, the relationship between the intracellular uptake of the N-lobe and its pharmacological activity remains poorly understood. Here, we report that the N-lobe is efficiently internalized by lung cancer cells via endocytic pathways, suppressing their proliferation. Moreover, the N-lobe showed higher intracellular uptake than hLF. We found that the N-lobe was internalized into the human lung cancer cell lines PC-14 and PC-3 via clathrin- and/or caveolae-mediated endocytosis. Intracellular uptake of the N-lobe was inhibited when an equimolar concentration of chondroitin sulfate (CS)-E, a GAG subtype involved in malignant transformation and tumor metastasis, was added. The inhibitory effect of the N-lobe on PC-14 cell proliferation decreased with the addition of CS-E in a dose-dependent manner, suggesting that the CS-recognizing sequence on the N-lobe is necessary for its internalization or that the CS proteoglycan on cancer cells acts as an endocytosis receptor. These results suggest that the efficient endocytic uptake of the N-lobe is important for its antiproliferation effects on lung cancer cell lines. Thus, the N-lobe presents a promising drug candidate for cancer treatment.


Assuntos
Lactoferrina , Neoplasias Pulmonares , Humanos , Lactoferrina/farmacologia , Células CACO-2 , Proteoglicanas/farmacologia , Receptores de Superfície Celular/metabolismo , Endocitose , Neoplasias Pulmonares/tratamento farmacológico
2.
Biochem Biophys Res Commun ; 534: 1076-1082, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129446

RESUMO

Human lactoferrin (hLF) is a glycosaminoglycan (GAG)-binding protein involved in various biological functions. It consists of two globular functional domains, referred to as the N- and C-lobes. Both heparin (HP) and heparan sulfate (HS) bind to the N-lobe domain of hLF. Although some biological functions of hLF such as neuroprotective effects and cancer growth inhibition are regulated by its binding to HS, the binding characteristics of hLF with other GAG subtypes, and their effects on biological activities are still poorly understood. Here, we report that hLF binds to chondroitin sulfate (CS)-E, a GAG subtype involved in various neurodegenerative diseases. The α-helical content of hLF, which is an indicator of changes in the secondary structure of hLF, increased in the presence of CS-C, CS-D, or CS-E, but not in the presence of HP, HS, CS-A, or CS-B. This structural change was also observed in the N-lobe, the N-terminal half region of the hLF. Additionally, the thermal stability of the N-lobe showed a dose-dependent improvement in the presence of CS-E, but not in the presence of HP. This indicates that the binding mode of hLF/N-lobe to CS-E may differ from that of HP. hLF was also found to neutralize CS-E-induced inhibition of neurite outgrowth and neuronal growth cone collapse, which are neurodegenerative responses to spinal cord injury, in cultured dorsal root ganglion neurons. Thus, hLF is a promising drug candidate for the treatment of CS-E-induced neurodegenerative diseases such as spinal cord injury.


Assuntos
Sulfatos de Condroitina/metabolismo , Lactoferrina/metabolismo , Neuritos/metabolismo , Crescimento Neuronal , Animais , Células Cultivadas , Galinhas , Humanos , Lactoferrina/química , Ligação Proteica , Estrutura Secundária de Proteína
3.
Biol Pharm Bull ; 42(6): 989-995, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31155596

RESUMO

An Intact form of lactoferrin (LF) is known to be absorbed from the small intestine and transported into the blood circulation. We reevaluated the cellular uptake and release of LF using an enterocyte model of human small intestinal cells derived from the Caco-2 cell line. In contrast to a previous report, we observed that intact bovine LF was taken up into seven and 21 d-cultured Caco-2 cells and successfully released back into the culture medium, even though the human intestinal LF receptor, intelectin-1, was not immunochemically detectable. Similar observations were made for human LF and its derivatives (the N-terminal half of LF designated N-lobe and Fc fusions). These observations regarding the uptake and release of intact LF in Caco-2 cells were consistent with in vivo observations. Therefore, we propose that the uptake and release of intact LF by Caco-2 cells should be assessed as a potential in vitro model of in vivo LF absorption in human intestines.


Assuntos
Enterócitos/efeitos dos fármacos , Intestinos/citologia , Lactoferrina/farmacologia , Animais , Células CHO , Células CACO-2 , Cricetulus , Enterócitos/metabolismo , Humanos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...